大奖娱乐官网88pt88-应邀走进本报两会会客厅

新西兰有很多大型租车公司,包括赫兹、AVIS等,提前计划好你的行程,确定提车和还车的地点,在网上看好车型并预订。英国的心理学家查尔斯?费尼霍(CharlesFernyhough)在他的新书《光碎片》(PiecesofLight)中说,科学家们常常把味觉和嗅觉的回想混为一谈,并用一个词“olfactory”来提及,由于从实习上讲,它们通常是一回事儿。CX4这款轿跑SUV的流线包括外形,与SUV的特点进行了融合,切分出了一块尚未被满足的需求。大家试试就知道了。美国玩的这一手是把球踢给中国,把责任推向中国,转移国际视线,置中国于两难境地,让中国左右不是人,两头不讨好。

大奖娱乐官网88pt88-应邀走进本报两会会客厅

发布者:文明办发布时间:2019-06-27浏览次数:85


主讲人:李敏 中南大学教授 博士生导师


时间:2019年6月29日13:40


地点:三号楼332会议厅


举办单位:数理学院


主讲人介绍:中南大学计算机学院教授、博士生导师、副院长。CCF 生物信息学专业委员会首批委员、中国人工智能学会-生物信息学与人工生命专业委员会常务委员、ACM SIGBIO  China 秘书长。主要从事生物信息学与数据挖掘研究,在Bioinformatics、IEEE/ACM Transactions on  Computational Biology and Bioinformatics等上发表SCI期刊论文80余篇,论文google  scholar总引用3500余次,h指数29,获国家授权发明专利10项。担任ISBRA2017、ICPCSEE2017等国际会议的程序委员会主席,是国际期刊Current  Protein & Peptide Science、IJDMB、IJBRA、Interdisciplinary Sciences:  Computational Life Sciences编委及IEEE/ACM TCBB、Neurocomputing、Complexity、BMC  Bioinformatics、BMC Genomics等的客座编委。  2011年被确定为湖南省青年骨干教师培养对象,2012年获得教育部新世纪优秀人才资助,主持国家自然科学基金重点项目、优秀青年项目、面上和青年项目各一项。获教育部高等学校科学研究优秀成果奖(自然科学奖)二等奖一项(排名第2)。  


内容介绍:Mining useful information from biomedical data is not only the crucial of life  science, but also the foundation of understanding the development of diseases.  In recent years, a lot of biomedical data have been accumulated from omics  technologies, imaging, electronic health records, and so on. Meanwhile, with the  development of big data and hardware, deep learning techniques have been  successfully used in various fields such as computer version, speech  recognition, and natural language processing. Considering their excellent  performance, we implemented some deep learning models to tackle biomedical data.  In protein bioinformatics, we focus on protein-protein interaction sites  prediction, essential protein prediction, protein function prediction, and  drug-target prediction. We built some deep learning models for extract local and  global features of protein sequences; then combined these features to improve  the predictive performance. For clinic data, we focus on electronic health  records classification and disease prediction. We developed some deep learning  models which capture the features of electronic health records and disease; then  used these features to conduct study. We hope that our studies can promote the  application of deep learning in biomedical data analysis, and provide useful  tools for solving the key problems in life science by using artificial  intelligence techniques.